Cracking the language code: neural mechanisms underlying speech parsing.

نویسندگان

  • Kristin McNealy
  • John C Mazziotta
  • Mirella Dapretto
چکیده

Word segmentation, detecting word boundaries in continuous speech, is a critical aspect of language learning. Previous research in infants and adults demonstrated that a stream of speech can be readily segmented based solely on the statistical and speech cues afforded by the input. Using functional magnetic resonance imaging (fMRI), the neural substrate of word segmentation was examined on-line as participants listened to three streams of concatenated syllables, containing either statistical regularities alone, statistical regularities and speech cues, or no cues. Despite the participants' inability to explicitly detect differences between the speech streams, neural activity differed significantly across conditions, with left-lateralized signal increases in temporal cortices observed only when participants listened to streams containing statistical regularities, particularly the stream containing speech cues. In a second fMRI study, designed to verify that word segmentation had implicitly taken place, participants listened to trisyllabic combinations that occurred with different frequencies in the streams of speech they just heard ("words," 45 times; "partwords," 15 times; "nonwords," once). Reliably greater activity in left inferior and middle frontal gyri was observed when comparing words with partwords and, to a lesser extent, when comparing partwords with nonwords. Activity in these regions, taken to index the implicit detection of word boundaries, was positively correlated with participants' rapid auditory processing skills. These findings provide a neural signature of on-line word segmentation in the mature brain and an initial model with which to study developmental changes in the neural architecture involved in processing speech cues during language learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

A Syntactic Neural Model for General-Purpose Code Generation

We consider the problem of parsing natural language descriptions into source code written in a general-purpose programming language like Python. Existing datadriven methods treat this problem as a language generation task without considering the underlying syntax of the target programming language. Informed by previous work in semantic parsing, in this paper we propose a novel neural architectu...

متن کامل

بررسی مقایسه‌ای تأثیر برچسب‌زنی مقولات دستوری بر تجزیه در پردازش خودکار زبان فارسی

In this paper, the role of Part-of-Speech (POS) tagging for parsing in automatic processing of the Persian language is studied. To this end, the impact of the quality of POS tagging as well as the impact of the quantity of information available in the POS tags on parsing are studied. To reach the goals, three parsing scenarios are proposed and compared. In the first scenario, the parser assigns...

متن کامل

Language Modeling with Functional Head Constraint for Code Switching Speech Recognition

In this paper, we propose novel structured language modeling methods for code mixing speech recognition by incorporating a well-known syntactic constraint for switching code, namely the Functional Head Constraint (FHC). Code mixing data is not abundantly available for training language models. Our proposed methods successfully alleviate this core problem for code mixing speech recognition by us...

متن کامل

Challenges of Computational Processing of Code-Switching

This paper addresses challenges of Natural Language Processing (NLP) on non-canonical multilingual data in which two or more languages are mixed. It refers to code-switching which has become more popular in our daily life and therefore obtains an increasing amount of attention from the research community. We report our experience that covers not only core NLP tasks such as normalisation, langua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 29  شماره 

صفحات  -

تاریخ انتشار 2006